/*
* 44.cpp
* Created on: 2015年4月5日
* Author: jtahstu
*/
//44 拉丁方
//构造 NXN 阶的拉丁方阵(2<=N<=9),使方阵中的每一行和每一列中数字1到N只出现一次。如N=4时:
//1 2 3 4
//2 3 4 1
//3 4 1 2
//4 1 2 3
//
//*运行结果
//The possble Latin Squares of order 6 are:
//1 2 3 4 5 6 2 3 4 5 6 1 3 4 5 6 1 2
//2 3 4 5 6 1 3 4 5 6 1 2 4 5 6 1 2 3
//3 4 5 6 1 2 4 5 6 1 2 3 5 6 1 2 3 4
//4 5 6 1 2 3 5 6 1 2 3 4 6 1 2 3 4 5
//5 6 1 2 3 4 6 1 2 3 4 5 1 2 3 4 5 6
//6 1 2 3 4 5 1 2 3 4 5 6 2 3 4 5 6 1
//
//4 5 6 1 2 3 5 6 1 2 3 4 6 1 2 3 4 5
//5 6 1 2 3 4 6 1 2 3 4 5 1 2 3 4 5 6
//6 1 2 3 4 5 1 2 3 4 5 6 2 3 4 5 6 1
//1 2 3 4 5 6 2 3 4 5 6 1 3 4 5 6 1 2
//2 3 4 5 6 1 3 4 5 6 1 2 4 5 6 1 2 3
//3 4 5 6 1 2 4 5 6 1 2 3 5 6 1 2 3 4
#include<iostream>
#include<cstdio>
using namespace std;
int main<span id="transmark"></span>() {
int a[10][10];
memset(a,0,sizeof(a));
int n;
cin >> n;
for (int i = 1; i <= n; i++) {//第一个数为1-n
a[1][1] = i;
for (int p = 2; p <= n; p++){//先把第一行推出来
if (a[1][p - 1] == n)
a[1][p] = 1;
else
a[1][p] = a[1][p - 1]+1;}
for (int j = 2; j <= n; j++)//后面的数根据前一行对应的数推,如果到n,则再从1开始
for (int k = 1; k <= n; k++) {
if (a[j-1][k] == n)
a[j][k] = 1;
else
a[j][k] = a[j-1][k]+1;
}
for (int k = 1; k <= n; k++) {//打印这个矩阵
for (int j = 1; j <= n; j++)
cout << a[k][j] << " ";
cout << endl;
}
cout << endl;
}
return 0;
}
P65-拉丁方
最新推荐文章于 2021-03-24 05:02:38 发布